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Abstract

Significant research has been done in the field of deep learn-
ing to add new classes to an existing set of classes in a neu-
ral model, and achieve similar performance on the new classes
compared to the older classes. We try to extend this idea into the
field of speech recognition by considering two separate problem
statements. Firstly, we choose the task of joint keyword spotting
and speaker identification with the feature of online enrollment
at test time, which was proposed in Interspeech’21. Next, we
consider the task of continual batch learning for keyword spot-
ting networks, where at each time step we only have access to
the current speech data but none of the older data for training.
In this setting, we propose a time-efficient solution to ensure
that the speech model performance on older training datasets
doesn’t deteriorate as newer data keeps on coming.

Index Terms: keyword spotting, speaker identification, transfer
learning, domain adaptation, continual learning

1. Problem Statement

1.1. Joint Keyword Spotting (KWS) and Speaker Identifi-
cation (SpkID)

The problem can be considered as a binary classification task
where at test time, if an utterance matches with an already en-
rolled keyword and is said by the same speaker then output 1
else output a 0. In addition to this, we might get new users say-
ing different keywords at test-time. Hence these new users need
to be enrolled to the system in an online manner.

‘We have thought about a few approaches to this problem which
are mentioned below:

1. Start off with the simplest baseline of having a fixed
number of speakers and train independent KWS and ver-
ification systems on the dataset provided in the INTER-
SPEECH AutoKWS challenge. The final system is then
simply product of the outputs of the individual systems.

2. Try out ideas like weight sharing of LSTMs for both
the tasks and formulate a joint multi-task kind of loss
function (if time permits). The multiple tasks which we
want sharing between are indeed keyword spotting and
speaker verification [1].

3. We explore ideas from domain adaptation which shall
help us use the already trained model and adapt it to a
new setting and hope to get a good common feature ex-
tractor. We borrow ideas from domain adaption in image
classification by adding a new regularizer on the model
weights which helps in transfering across various do-
mains.

4. If time permits, we might look into speech representa-
tions and methods involving wav2vec models to achieve
better results in this task.

1.2. Continual Batch Keyword Spotting

The problem statement is as follows, initially we have a fixed
set of data with fixed set of labels at t=0. We train a model on
this data and achieve the required results. At t=t;, a new dataset
is introduced with a different set of models. But now we don’t
have access to the previous data, we only have access to the
trained model parameters. In this setting, we need our model to
perform well on the current data as well the old data. At t=to,
another new dataset with new labels is introduced and this goes
on. Naturally the model is bound to “forget” about the older
data given it keeps on seeing new data, and performance on it
will deteriorate. Since we do not access to the older data it is
not possible to join both the old and new datasets and train the
model on them together. Moreover, combining the datasets will
anyway lead to longer training times. Hence we need an effi-
cient solution to remedy this problem.

For this task, we have looked into several domain adaptation
techniques used in image recognition/computer vision problems
and feel that the theory behind those methods will hold in this
setup also. We have currently explored the use of the Elas-
tic Weight Consolidation (EWC), Learning Without Forgetting
(LWF) and Continuous Replay Adaptation (CRA) in our project
and obtained significantly better results compared to the base-
line models. The results can be seen in Section3.

Two experiments were carried out using the above meth-
ods. In the first one, the dataset is divided into class batches
(Da,Dg, Dc) and corresponding model (M;) is trained se-
quentially with the use of above domain adaptation for higher
datasets and feature extractor of model M;_;. During test
phase, this model is used to test on different batches using their
respective softmax layers (S;). The accuracies are compared
across different methods and varying the hyper-parameter in
the loss function. In the second experiment, we do away with
our previous assumption that we know to which batch a sam-
ple belongs to at test time. So the model at any time instant
can receive samples from classes that are not part of the cur-
rent classes that it is training on. For this setup, we increase
the number of classes at any step by 1, to account for the “un-
known” class. For samples being classified as “unknown” in S,
it is passed to classify via S;—1, until it finds the batch where it
is classified not as “unknown”.

In the subsequent sections, we outline our progress on each of
the above tasks, describe the dataset and the experiments carried
out.

1.3. Dataset Description

We use the dataset provided by the competition organizers for
the first task of Joint KWS and SpkID. All data are recorded
by near-field mobile phones, (located in front of the speakers
at around 0.2m distance). Each sample is recorded in single
channel, 16-bit streams at a 16kHz sampling rate [2]. There



are a total of 100 speakers each having their own different key-
words. There are a total of 10 utterances per speaker which are
positive (saying the assigned keyword) and 30 other utterances
where the speaker id is the same however the utterance need
not match with the keyword. These 2 basically serve as natural
splits for training keyword spotting and speaker identification
respectively. Each speaker may potentially speak in a different
language and hence we need to handle these multi-lingual vari-
ations as well in any sort of feature extractor we build. Apart
from these we have 5 other speakers which are to be enrolled at
test time.

The other dataset which we have used for the continual batch
KWS task is the trimmed version of Speech Commands dataset
[3] (same as used in Assignment 2) with 105,829 one second
long utterances and 35 different classes. We introduce different
splits in the classes to perform the continual learning tasks.

2. Joint Keyword Spotting and Speaker
Identification tasks

In this section, we outline our progress in the first point defined
in the problem statement, namely training a keyword spotting
system followed a speaker identification block. We report the
architechture for each of these, the training methods and the
final results for both of these.

2.1. Keyword Identification using TC-ResNet

Due to dearth of labelled data as stated above, we try to
experiment with transfer learning for the keyword identification
task. The output is clearly a 100 length softmax output as each
speaker utters a different keyword. We use the architecture
of Temporal Convolution for Real-time Keyword Spotting
(TC-ResNet) [4] and the weights from the pretrained model on
Speech Commands dataset [5].

The input to this model is the time-freqeucny MFCC of
the raw audio. TC-ResNet using temporal convolutions for the
MFCC instead on convential 2D convolutions. They employ
temporal convolutions to increase the effective receptive field
and follow the original ResNet implementation for other layers
by adopting strided convolutions and excluding dilated convo-
lutions. The final softmax layer was replaced and changed by
training on the above dataset. The numbers reported are the
multiclass classification accuracies (think of it as the Hamming
Loss). The final resuts were as follows:

Train Accuracy: 98.12
Validation Accuracy: 85.64

2.2. Speaker Identification using SincNet

For speaker recognition, we use the architecture of SincNet
[6] which is like a basic CNN based classifier however the
first layer consists of sinc filters (bandpass filters in frequency
domain). This bank of filters has varying cutoff frequencies
which helps in focussing different parts of the input audio
signal. Besides, the sinc functions reduce the number of pa-
rameters on the SincNet first layer because each sinc function
of any size only have two parameters to learn against L from
the conventional convolutional filter, where L is the size of the
filter. As a result, the sinc functions enables the network to
converge faster. This was trained end-to-end using the training
data as more utterances were available for speaker identification

task. We intially also tried using transfer learning in this as
well with pretrained weights from the TIMIT dataset. Using
transfer learning, the results we not that great as mentioned
below which motivated us to train end-to-end:

Train Accuracy: 74.32
Test Accuracy: 57.83

For end-to-end training we explore two different loss
functions - the first one being the conventional softmax over
a 100 length vector and the second was a modified additive
margin softmax (AM-Softmax) [7]. The additive margin
works as a better class separator than the traditional decision
boundary from softmax. Furthermore, it also forces the samples
from the same class to become closer to each other thus im-
proving results for tasks such as classification. The results were:

Train Accuracy SincNet: 86.53, AM-SincNet: 99.74
Validation Accuracy SincNet: 72.74, AM-SincNet: 86.17

2.3. Combined Results

We now describe the final results after combining the keyword
spotting and speaker identification systems. For this, we simply
multiply the softmax outputs (after thresholding to 0/1) of the
above two models and if the final vector is all 0, we predict
0 and if an index is 1 (there can be only one such), then the
device is activated as both the keyword and speaker are verified.

Train Accuracy: 88.56
Validation Accuracy: 59.34

We observe a big drop in the validation accuracy. For
this, per speaker we had set aside 12 utterances of the same - 8
of them should be predicted as 0 as the keyword is not present
and 4 of them should output 1. Thus we had a total of 1200
validation utterances for which this accuracy is calculated. We
had expected the final accuracy to be around the product of
individual accuracies which comes out to be around 70. We
noticed that both the KWS and verification models were not
matching even though they performed well on independent
tasks. Out of the 400 to be allowed, 147 of them were not
allowed by the KWS system itself to proceed further. In
general, the system predicted a lot of zeros as compared to ones
(false positive rate was less) and hence the final accuracy took a
hit. We also realised that the original problem statement needed
us to enroll new users at test time which we had not handled
and hence switched gears to the next problem statement on
continual batch keyword spotting.

3. Continual Batch Keyword Spotting

In this section, we first outline the basic problem of consider-
ing batch-wise data and outline the idea of domain adaptation
which is conventionally used for image classification. We con-
sider two similar problem statements in which we have different
domains, each domain consists of a different set of words, and
we need to make a feature extractor that can make accurate pre-
dictions on each domain. The domains arrive continually and
we don’t have access to the previous domains at any point of
time. In the first experiment, we assume that during test time
we know from which domain a test sample is chosen from. In
the second experiment we let go of this ideal assumption and
introduce an “unknown” class to account for out-of-vocabulary



words at each stage. We have formally shown the final frame-
work of the model in a later section. First we describe about the
domain adaptation techniques we use to ensure that our model
doesn’t forget about the previous domains.

3.1. Domain Adaptation Basics

In the problem statements defined above, we assume that we
don’t have access to the previous domains. In such cases of do-
main shift, the model would ideally forget the important char-
acteristics of the older domains. Domain adaptive methods mit-
igate the harmful effects of domain shift by learning transfor-
mations that find common invariant features between different
domains and hence ensure that the performance on the older do-
mains doesn’t deteriorate. In an unsupervised setup as ours, the
problem of domain shift is even much severe. Hence we adopt
three popular techniques used in domain adaptation in image
datasets, with the hope that the basic foundations of those meth-
ods can be applied to our speech task and prevent forgetting as
much as possible when we move from one dataset to the next.

These methods are included as penalties with the loss func-
tion during training on any domain and constraint the model to
learn features which are embedded in all the domains we have
encountered till now. We briefly discuss about the techniques
below.

3.1.1. Elastic Weight Consolidation (EWC)

EWC [8, 9] tries to capture the information of past tasks into
the posterior distribution p(6|Doia). Since the true posterior is
intractable, it is approximated as a gaussian distribution with
mean given by the parameters 6,, (optimal weights for the
old task) and the diagonal precision given by the diagonal of
the Fisher Information matrix F. F is equivalent to the second
derivative of the loss function near a minimum and can easily
be calculated. Given this approximation, the final loss function
in EWC can be written as

N A .
L(0) = Lnew(0) + 3 5 Fi(0: = 00a) (D

A is a hyperparameter. The summation ¢ is over all param-
eters with ; being a single parameter, and F; is the diagonal
element of corresponding Fisher information matrix of the pa-
rameter when training on task A. Lye,(0) is the loss for the
current task only. When moving to a third task, task C, EWC
will try to keep the network parameters close to the learned pa-
rameters of both task A and B.

3.1.2. Learning Without Forgetting (LWF)

Given a neural network with shared parameters 6, and task spe-
cific parameters 0,4, LWF [10] tries to learn parameters 6r,e.
that work well on both the old and new tasks by using only
samples and labels from the new task. For this, we introduce
an extra term in our loss function which measures how much
the features generated by 0, and 6,4 differ in the feature
space. If our feature extractor works well on both the old and
new tasks, the features generated on the current task by both the
feature extractors shouldn’t be far apart. So for this, the penalty
applied is a L2 penalty on the features. The final loss function
using LWF can be written as

L(0) = L(Onew) + XD (Onew(X:) = Oora(X3))* ()

where ) is the hyperparameter, L(0new ) is the loss function
only on the new task and X; belongs to the set of samples in the
new task.

3.1.3. Continuous Replay Adaptation (CRA)

CRA [11] tries to address the issue of forgetting previous do-
main information by randomly saving the scores for a few pre-
viously seen examples and using a “replay loss” (Lyepiay) to
ensure that the response of current model to the same examples
is the same as before. Hence at every stage of adaptation on a
dataset, we produce a mini-dataset with a few selected obser-
vations from the specific dataset together with their predicted
scores/labels. The final loss function using CRA can be written

L(0) = L(Onew) + ALreplay (C(FE(Xp)), Yp) ()

where A is the hyperparameter that controls how much to op-
timize for past domain efficiency, L(0neq ) is the loss function
only on the new task and X, Y, are the random samples and
their predicted scores saved from the previous domain/dataset.
For our purpose, we have used cross entropy loss as our replay
loss.

3.2. Experiments and Results
3.2.1. Experiment ]

We perform experiments on the Speech Commands dataset [3]
with 35 classes [12]. To mimic enrollment of new user, we split
the dataset on the basis of the class, train a keyword classifier
for one split and then once the other splits are presented, we
tune the weigths of the common feature extractor of both
of them so as to ensure that the overll perfomance remains
good. This will be more clear when we describe the actual
experiments.

To begin with we split the dataset into 3 parts, Dataset A
having 12 classes, Dataset B having 12 classes and Dataset C
having 11 classes. We first train the LSTM-based model (used
in Assignment 2) on Dataset A for 10 epochs.

Now we have Dataset B at our disposal. One naive thing
is to use the same feature extractor for Dataset A and just train
the final softmax layer hoping that the features learnt are rich
enough. But we can modify the pretrained weights as well
using the EWC/LWF/CRA regularization and thus the final
model will perform well on both the above splits.

The final results by setting the optimal value of hyperpa-
rameters are presented in Table 1 (2 splits only) and Table 2 (3
splits). For just two splits A and B, the accuracy on A before
adaptation was 86.78%. Next, we present the same results but

Method A B
Baseline 42.51 86.04
EWC (A = 15) 63.2 8048
LWF (A = 0.0005) 44.5 86
CRA(A=1) 53.17 86.52
Table 1: Domain Adaptation Results for 2 splits

for 3 splits A, B, and C with the number of classes being 12,
12, and 11 respectively. The accuracy on A before adaptation
was 89.26% and the order of adaptation was A followed by B
followed by C. Next, we show some plots which were used to



Method A— B A— B — C Performance on AB after A->B adaptation in A->B->C
A B A B C Parameter Tuning for CRA I
Baseline 48.1 90.1 29.82 48.67 89.45 —
EWC ()\ = 20) 7865 8479 6405 7862 8448 Performance of A,B with CRA on A->B adaptation .
LWF (A = 0.0005) 62.56 91.68 37.42 62.77 91.14 P

CRA(A=1) 61.34 82.01 4929 6235 88.36 "

Table 2: Domain Adaptation Results for 3 splits

tune the hyperparameters and get the optimal ones whose re-
sults were shown in Table 1 and Table 2 above. The one on the
left is for the 2-split case while the ones on the right are for the
3-split case.

Parameter Tuning for EWC IR = ]

Performance of A,B with EWC on A --> B Adaptation

For 2 datasets, after A = 15 the performance on
A saturates. Hence we choose A = 15 for our
experiments.

For 3 datasets, after A = 20 the performance on A,B and C
approximately saturates. Hence we choose A = 20 for our
experiments.

Figure 1: Parameter tuning on EWC

Performance on A, B after A>B adaptation in A->B->C

Parameter Tuning for LWF

Performance of A, B with LWF on A->B adaptation

Performance on A, B & C after A>B>C

0 oooss  ooo 00005 001 ows oot

For 2 datasets, there is a small increase in accuracy
of Atill A = 0.0005, after that it deteriorates. Hence
we choose A = 0.0005 for our experiments.

For 3 datasets, after A = 0.0005 the performance on AB and
C approximately saturatesffalls. Hence we choose A = 0.0005
for our experiments.

Figure 2: Parameter tuning on LWF

Some observations from the above results are presented -

1. Applying EWC during adaptation leads to significantly
better results compared to the baseline. The current
model is able to perform well on the current dataset as
well as the older datasets.

2. LWF doesn’t work very well in this setup as can be seen
from the results and parameter tuning graphs. There is
only a marginal increase in performance at most times.

3. CRA works quite well but the results are still inferior
compared to EWC. The performance on older domains
increases with A but the model becomes more unstable
as A is kept on increasing.

- . Performance of A, B & C after A->B->C

There is a tradeoff between performances of A
and B with A. We have chosen A = 1 as after that
we noticed slightly unstable performances.

For 3 datasets, after A = 1 the performance on AB increases
but C decreases.Hence we choose A = 1 as a middle point for
our experiments.

Figure 3: Parameter tuning on CRA

3.2.2. Experiment Il

In this experiment, we do away with our previous assumption
that we know to which dataset a sample belongs to at test time.
So the model at any time instant can receive samples from
classes that are not part of the current classes that it is train-
ing on. For this setup, we increase the number of classes at
any step by 1, to account for the “unknown” class. Consider an
example in which dataset A has 12 classes. We train a model
with 13 classes and use samples from other classes (not in the
12) and give them “unknown” label. Next, the previously de-
fined DA methods to train the model on dataset B. During test
time now, a sample first goes through the feature extractor and
softmax layer of B and checks if it is unknown or not. If it is
unknown, then we check it through the softmax layer of A to
see if belongs to dataset A. This can be better understood with
the help of Fig 1.

Just like previous experiment, 3 batches of dataset (A, B, C)

C - softmax layer Unknown B - softmax layer Unknown A - softmax layer

[ Bachcasses | 22+ Batchoksses | |—%%5 o Batchclasses | |

SHARED
HIDDEN
LAYERS

—

Test samples

Figure 4: Model used in combined testing

were assumed. After training B with adaptation on A, the above
model is tested with samples from both A and B (referred to as
AB in Table 1) and on individual batches too. This process is
again repeated after adaptation on the next batch C, testing us-
ing samples from all batches (referred to as ABC in Table 1)
and on the above described different domain adaptation meth-
ods. With the combined testing approach used, the accuracies
on test dataset becomes lower as more batches are adapted. Also
the accuracies on individual batch samples are also lower com-
pared to Expt 1 due to increasing possibility of misclassifica-
tion (eg. A sample belonging to class of lower batch, can be
correctly classified only if it is classified as the unknown labels
in the higher batches). Always the recently adapted batch has
the highest accuracy across all adaptation methods. On average,
the accuracy metrics for EWC and CRA loss seems to perform
better than LWF for same adaptation scenarios and test data.



Test dataset EWC LWF CRA

A— B
AB 69.67 61.24 71.34
B 82.29 86.11 84.37
A 58.06 47.51 57.18

A—B—C

ABC 5343 4128 56.38
C 79.99 65.10 68.18
B 40.82 38.17 45.86
A 3743 3436 36.27

Table 3: Domain Adaptation for 3-way split

4. Future Work

One possible line of future work could be to do away with the
extra unknown class label but introducing a discriminator which
when given a sample gives us the split which the sample is sup-
posed to belong to. Once we have that, we can just perform
inference on the model for that particular dataset and get the
exact class id for the sample to be tested.
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