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1 Introduction

In various forms of data, we often want to separate certain features in them; for example, in face
image data, we want to separate gender, hair, eyes, pose, etc. When we perform discriminative
modelling, we are unable to capture or characterize the different features in a meaningful manner.
However, generative modelling allows us to capture these features directly by introducing latent
variable models, which are a proxy for the actual features. The variational autoencoder is such a
generative tool that is extensively used for unsupervised representation learning [1].

However, it turns out that these variational autoencoders are much harder to optimize pa-
rameters over by maximizing likelihood than autoregressive models. Thus, we instead resolve to
maximize a lower bound to the likelihood, which we term as ELBO (Evidence Lower Bound). To
maximize this ELBO, we have an encoder structure that maps every input to a distribution over
latent variables qϕ(z|x), and a decoder that parameterizes the distribution p(x|z). In general, a latent
variable model can be used to model the input distribution with

∫
p(z)p(x|z)dz where p(z) is the

prior over the latent variables which is chosen beforehand.

Inference in latent variables models means to infer the posterior p(z|x) if we are given the
joint p(x, z). This is hard problem as it involves solving high-dimensional integrals which are
intractable and hence people resort to approximation methods. In our project, we discuss and
investigate a method of maximizing ELBO and trying to perform better inference in VAEs. This has
applications in tasks such as image inpainting and de-noising.

2 Problem Statement & Related Work

For VAEs, in practice, we often map the input to a distribution over latent variables using a neural
network, which tells us the parameters of the posterior distribution. This makes it easy to train the
VAE, and is called amortized inference. Thus, in inference models, we usually have 3 types of gaps
created in the ELBO [2, 3, 4, 5]:

• Approximation gap: This is the gap between the best-fit distribution from a variational
family to the actual distribution p(x). Thus, this is the gap created due to the choice of
variational family in a model. A more expressive variational family will lead to a smaller
Approximation gap.
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• Amortization gap: Amortization gap is created due to our approximation of using a common
parameterized network (across all x; for example, any encoder) to map the input x to
parameters ϕ, which makes inference easy to perform, rather than having to optimize the
parameters at each x. Due to this approximation, we do not get the best-fit model from the
family; Amortization gap represents this difference.

• Inference gap: Inference gap is the total gap between a model’s ELBO estimate and the
actual log(p(x)). It is the sum of Approximation and Amortization gaps.

The problem statement is to try and reduce the Inference gap in VAEs. Ideally, we should learn a
different set of distribution-characterizing parameters for every input - this is called unamortized
inference. It is intuitive that unamortized inference will lead to a tighter ELBO bound. In our project,
we propose a model that aims to reduce both Approximation and Amortization gaps in latent variable
models. We do this by:

• Using an amortized model by picking an initial ϕ value from an encoder, and then optimizing
parameters for a test point x; this should reduce the amortization gap.

• We use hierarchical VAEs with top-down and bottom up merging. The intuition from the
merging idea is drawn from the precision-weighted merging trick that was previously applied
in Ladder Networks [6, 7].

• We also use a normalizing flow after sampling from the posterior to go the z-space, which
expands the variational family and allows the encoder to more closely represent the maximum
likelihood of the real distribution wrt the decoder family, which reduces the NELBO. This
idea is drawn from the NVAE paper [8].

A secondary problem statement, which is a direct application of our ideas above, is performing better
image in-painting and denoising using VAEs. To perform Image inpainting and denoising, we use the
iterative Gibbs-sampling approach described in [9, 10], which is expanded upon in the next section.

3 Technical Approach

In a variational auto-encoder, we send the input x to a latent space z, and we try to model p(x) as∫
p(x|z)p(z), where p(x|z) and p(z) are functions that are easy to represent. Specifically, in a VAE,

we consider the following model:

p(z) = N (z|0, I)
pθ(x|z) = Bern(x|fθ(x))
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Ideally, we want to choose θ to maximize pθ(x) (i.e, the likelihood of the data that we get). However,
evaluating pθ(x) is complicated. So we take inspiration from the evidence lower bound (ELBO),
which is as follows and holds for any function qϕ(z|x):

log pθ(x) ≥ ELBO(x; θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||p(z))

We will choose a large variational family qϕ(z|x), and then maximize the ELBO in lieu of the
actual likelihood. This acts as an approximation to maximum likelihood estimation. In a VAE, the
variational approximation we consider is as follows:

qϕ(z|x) = N (z|µϕ(x), diag(σ2
ϕ(x)))

We note that here we have a encoder qϕ(z|x), which is a neural network finding the parameters of
the posterior for any input point. This is called amortization. Ideally, we should fit the posterior
parameters that arise for each input point x separately; this would be called unamortized inference.

A GMVAE is a Mixture of Gaussians VAE which expands the variational family by choosing a more
complicated learnable prior. In other words, our prior is as follows:

pθ(z) =

k∑
i=1

1

k
N (z|µi, diag(σ2

i ))

NVAE

Nouveau VAE (NVAE) [8] is a hierarchical VAE which has multiple scales of latent variables
(z1 to zL) unlike traditional VAEs which have to model the latent space components to be
independent of each other. In hierarchical VAEs, there exists an autroregressive structure in the latent
space prior and the posterior which makes the encoding distribution more expressive.

NVAE is not only an hierarchial VAE but also implements weight sharing between the top-
down and the bottom-up path which ensures that a common signal is used for finding the
autoregressive structure in the latent space for both the encoder and the decoder. In other words,
NVAE has a bidirectional encoder and it’s the top-down path of the encoder has the same weights as
that of the decoder. The model architecture of NVAE is shown below:

Figure 1: NVAE model architecture [8]
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As we can see in figure 1, the top-down path in the encoder has the same weights as the de-
coder(generative model), both of which are denoted by the same blue color. During training time,
an input sample x is passed through the encoder to first get z1. The blocks labelled r are just neural
networks with residual connections and swish activations. From z1 and h(which can be a simply
initialization vector like all zeros), we keep on finding z2 to zL (L = 3 in the above diagram). From
the top-down path, we get the reconstruction x̂ which is used to compute the NELBO for training.
The loss function of NVAE is as follows:

Figure 2: NVAE NELBO Loss Function [8]

Why NVAE?
As mentioned earlier, we want to bridge both the approximation and the amortized gap. For bridging
the approximation gap, we have to make the encoding distribution qϕ(z|x) to be more expressive
in order to model the p(z|x). Adding additional latent representations helps in making the encoder
more expressive. NVAE also uses a flow after the latent variables in order to make the encoder more
expressive. Thus, the idea is that use of hierarchical VAE with weight sharing helps in reducing the
approximation gap.

Unamortized Inference

To reduce the second type of gap (amortization gap), we perform un-amortized inference where the
encoder parameters are optimised for each datapoint. We perform unamortized inference by first
training an encoder and decoder in an amortized manner, and then performing gradient descent on
the NELBO (Negative ELBO) over the input parameters to find the posterior parameters for each
sample datapoint x(i). To be precise, the encoder gives the parameters µϕ(x), σ

2
ϕ(x) to the posterior

distribution. For our model, we perform gradient descent on µ(x), σ2(x), and initialize the descent
with the encoder parameters µϕ(x), σ

2
ϕ(x). We used the Adam optimizer with a learning rate of 10−3

and study how they number of iterations affects the performance.

Applications of Inference

We study two broad applications of inference in latent variable model:

1. Image Inpainting

2. Image Denoising

For image inpainting, we perform iterative Gibbs sampling [9] which works as follows:

• Let the image at time t be x′
t

• We sample a latent variable zt ∼ qϕ (z|x′
t)

• We then sample an output xt ∼ pθ(x|zt)

• Let our image at time t+ 1 be x′
t+1 = m⊙ x′

t + (1−m)⊙ xt

Here, m is the binary mask of the image. We perform 100 iterations of the above approach to perform
inpainting. For image denoising, we perform the same iterations as of Gibb’s sampling but this time
we do not have any mask for performing the update. The idea for both these tasks is that if the
model can infer the latent variable well, then even slight perturbations in the input image should not
change the latent variable we infer much and hence on passing through the decoder, we should get a
reconstructed image which looks like that it is drawn from the true data distribution.
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Table 1: NELBO on MNIST, unamortized inference, VAE

GRADIENT DESCENT STEPS NELBO ON TRAIN DATA NELBO ON TEST DATA

1 99.86 101.34

10 99.71 101.16

100 99.07 100.23

1000 96.67 98.9

Table 2: NELBO on MNIST, unamortized inference, GMVAE

GRADIENT DESCENT STEPS NELBO ON TRAIN DATA NELBO ON TEST DATA

1 98.43 98.43

10 96.72 98.27

100 95.34 97.12

1000 92.2 95.64

4 Results

Metrics

We utilize three major quantitative metrics to define model performance: NELBO, FID scores and
SSIM scores. The NELBO is primarily utilized once we fix a model to compare performance between
unamortized and amortized inference. We use FID and SSIM metrics to compare quality of generated
images across models. The mathematical description of the metrics are:

1. NELBO: The NELBO is a component of the VAE loss, and has already been defined in the
previous sections.

2. The Frechet Inception Distance (or FID)1 is a metric for evaluating the quality of generated
images. The metric is computed by first passing generated images into the Inception
V3 network to obtain activations. A multivariate gaussian is then fit on these output
activations, for both generated and real images. If µ,Σ are the parameters for the generator,
and µw,Σw are the parameters for the real data, then the distance metric is computed as
||µ−µw||22+tr(Σ+Σw−2(ΣΣw)

1
2 ). Essentially, this metric is a measure of the similarity

between real images and generated images.

3. Structural Similarity Index Measure (SSIM)2 is another metric used for measuring the
similarity between two images. At a high level, the metric computes the patchwise similarity
between two images. We use this metric for the tasks of denoising and inpainting to compare
the denoised/inpainted image with the original image.

Preliminary Results

Our first attempt was on standard VAEs and GMVAEs before moving to hierarchical architectures
such as NVAE. We evaluated how scaling the number of gradient descent steps for unamortized
inference affects the NELBO for this model. From tables 1, 2, we can observe that the NELBO of the
model decreases as expected. Furthermore, in Figure 4, we observe the qualitative effect of changing
the gradient descent steps across model architectures. The images infilled using a GMVAE are better
than the simple VAE, which is to be expected due to a lower approximation gap.

1https://github.com/mseitzer/pytorch-fid
2https://github.com/jorge-pessoa/pytorch-msssim
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Figure 3: Image to be inpainted

(a) VAE, GD Steps = 1 (b) VAE, GD Steps = 1000 (c) GMVAE, GD Steps = 1000

Figure 4: Image inpainting for VAEs and GMVAEs: The first image is obtained after inpainting by optimizing
the inference step using 1 gradient step update. The second & third images are obtained after performing 1000
gradient descent update steps; there is a clear visual contrast between the sharpness on changing the Gradient
Descent Iterations. We can also observe that GMVAEs are able to impute some digits better than VAEs (example
digit 7).

Figure 5: NELBO comparison across models

Technical Variations

We now move to reducing the approximation gap further by using hierarchical models such as NVAE.
We use an NVAE model pre-trained on MNIST for all our experiments. Hence, this means that we
use the same decoder and never update the decoder parameters.
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(a) Masked Image with missing pixels (b) Amortized Inference

(c) Unamortized Inference (d) Unamortized with Flow re-training

Figure 6: Inpainting, comparison across methods for NVAE

On NVAE, we performed three different methods for inpainting and denoising. We first applied
standard amortized inference as the baseline. We then attempted two variations of unamortized
inference, one variation involving gradient descent on the parameters µ, σ of the latent variables,
and another with gradient descent on both flow parameters and on µ, σ. We compare these different
variations both qualitatively and quantitatively for both inpainting and denoising.

MODEL FID SCORE (↓) SSIM SCORE (↑)

NVAE, AMORTIZED 11.52 0.9915

NVAE, UNAMORTIZED 10.90 0.9925
NVAE, UNAMORTIZED, WITH FLOW 11.23 0.9875

Table 3: SSIM and FID scores

We also perform an experiment to compare the NELBO of these three NVAE methods with the VAE
and the GMVAE. Results are given in Figure 5.

Analysis of results

We note that, in Figure 6 the NVAE with flow retraining tends to give the most clear images
and manages to reconstruct each digit in some manner, even with a noise variance of 0.5 (even
though they are not the most accurate, as quantitatively validated in Table ??). It could be that
the normalizing flow smoothens out the image but does not correlate to being similar to the data
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(a) Noisy Image, noise from N (0, 1/2) (b) Amortized Inference

(c) Unamortized Inference (d) Unamortized with Flow re-training

Figure 7: De-noising, comparison across methods for NVAE

distribution.
In Figure 6, we note that the image formed by unamortized inference is the clearest, with a higher
amount of digits identified. Flow-retraining does not seem to do well here.

The trend in Figure 5 represents a trend of lowering NELBO as training proceeds and gra-
dient descent steps increase, with the winner between unamortized inference and unamortized with
flow-retraining being unclear. The NELBO of the NVAE is much lower than the VAE and the
GMVAE NELBOs, which demonstrates it’s clear superiority as an architecture. The code for the
above results can be found here:
1. https://github.com/pranayreddys/CS236-Project-Unamortized-Inference
2. https://github.com/jianvora/VAE_unamortized_CS236

5 Conclusions & Future Work

We observe from our results in section 4 for the VAE, GMVAE and NVAE that unamortized inference
not only lowers the NELBO, but also improves image quality significantly in practice. However,
there is a trade-off between time taken to optimize the parameters and the quality we obtain.

The idea that we used in this paper, which we coin “unamortized inference", is known in
the literature as Stochastic Variational Inference.

In Stochastic Variational Inference, multiple gradient steps leads to a trade-off between
compute, time and high-quality inference. Recent ideas such as Semi-amortized Variational Inference
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[11], and Recursive Inference for Variational Autoencoders [12] provide a way to perform a single
pass on getting x to update the encoder, rather than multiple gradient steps (or in general faster
methods to update the encoder rather than performing multiple descents). This is useful, since it
allows us to perform high-quality inference with low amounts of compute and time taken. Thus, it
might be an interesting area for future work to combine the two ideas and try to train the NVAE with
Recursive Inference for every datapoint x.
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