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1. Introduction

Given a set of N random variables X1, Xo, ..., Xy, estimating the joint density p(Xi, Xo, ..., Xn)
is a fundamental problem in many fields such as statistics and machine learning (1). This
probabilistic interpretation can help us make many inferences to help us aid take better decisions
for the problem in hand. For a simple example, take X; as the time taken to drive to a particular
destination and X;, 2 < ¢ < N denote a scalar number indicating the traffic on the N — 1
streets. We would want to make predictions such as the minimum time needed for reaching the
destination given we somehow know the traffic profiles of all the streets, i.e. more formally, we
would want to find the following : min p(X;|Xs, X3, ..., Xy) where the minimum is over the
choice of routes. Capturing the joint density is helpful as we can infer a variety of queries of

such form easily. Most the work done can be classified in a few categories, namely :

1. If the realisations of these random variables are discrete, then standard histograms would
work, but it requires a large number of samples (exponential in N) to make the estimate

of the joint density close to the actual density and is clearly not scalable with large N

2. Bayesian networks or Markov random fields which explicitly model some (in)dependencies
between the set of random variables and hence scalable to larger datasets however require
a lot of approximation techniques like variational inference (2) from a variety of common

queries like evidence, marginal, conditional queries (3).

3. A Gaussian mixture model is among the simplest ways of a capturing the probability
density by modelling it as a mixture of gaussians. These are like kernel density estimates,
but with a small number of components (rather than one component per data point)(+).
This is indeed shown to be a universal approximater, i.e. with enough number of
components, it can approximate any density closely. This however is not very practical to
use because the number of components increases very rapidly for even commonly occurring

densities.

Given the relevance of the problem of density estimation, we would want to find the density
of the N variables while still saving us from the curse of dimensionality. We aim to answer a
few important questions regarding this topic. Can we do some transformation of the data to
try and fit some simple estimators even though the density in the higher dimension is much
more generic and expressive? If yes, what can this transformation be? These are some of the

questions which this report tries to answer.



2. Preliminaries

2.1 Mixture of Log-Concave Densities

A log-concave density, as the name suggests, is defined as a density whose logarithm results
in a concave function. Although these seem to be restrictive, these indeed cover a variety
of commonly encountered densities such as a Gaussian, Laplacian, Beta and even a uniform
distribution defined over a convex set. It is reasonable to assume that a large variety of data is
generated following a mixture of log-concave densities. It is reasonable to assume data drawn
from a mixture of such rich distributions which can also model heavy tails as opposed to a naive
Gaussian mixture model which in fact is a special case of the above assumption. It is evident
that we cannot directly learn such a density estimator in the high dimensional data because we
do not know which mixture component follows which form of parametric distribution which is

needed to learn general mixtures using standard techniques like Expectation Maximization.

More formally, our model can be formulated as follows: Consider a random vector X € R¥
which follows a mixture of log-concave densities f;(x) with K (finite) components subject to

>, wi =1, w; >0 and each f; being log concave

() = 3 wih(a)

This is model which shall be used for all the subsequent sections of the report whenever we

refer to the density of the high dimensional data.

2.2 Random Linear Projections
For a given vector X € RY, we define the following operation as random linear projections:
Y =X

where ® € RM*Y is composed of entries drawn i.i.d from a standard normal Gaussian or a
Bernoulli {—1, 1} distribution with the columns scaled accordingly. If M < N, then we call the
projection as compressive which is the regime we will consider in this report. Such a forward
model is commonly used for compressive sensing of signals and random projections have also
been shown to do dimensionality reduction much more computationally efficiently as compared
to some other expensive methods like PCA. Most work on random projections want the matrix
® to follow the restricted isometry property, which in other words means that ® is almost

orthogonal which helps in preserving distances between the points even after projection.
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2.3 Johnson Lindenstrauss Lemma

The lemma has uses in compressed sensing, manifold learning, and dimensionality reduction.
Much of the data stored and manipulated on computers, including text and images, can
be represented as points in a high-dimensional space. However, the essential algorithms for
working with such data tend to become bogged down very quickly as dimension increases. It

is therefore desirable to reduce the dimensionality of the data that preserves its relevant structure.

Formally, given 0 < € < 1, a set X of m points in RY and a number n > 8In(m)/e?, there exists
a linear map f : RY — R” such that

(L=l —vl* < [1f(w) = FOII* < (1 +)|Ju—v|]*

for all u,v € X(5). Note that the dimension of the projected subspace n depends only on m
which is the number of datapoints and not the actual dimension of the data N. Let f be a
linear projection matrix ®, and taking v = 0, we can restate the JL. Lemma in the following
manner:

(L+ &) HPul* < Jul]* < (1 - &)~ Dul?

with the probability of

Pr(|@ull; € [(1 = e)llull3, (1 +e)[lull3])) > 1 —n~?



3. Random Linear Projections of Log-

Concave Densities

3.1 Results for Isotropic Random Vectors

A random vector X € R is said to be isotropic if E(X) = 0 and Cov(X) = I,, where [, is
the n x n identity matrix. The Grassman manifold G,,; of all [—dimensional subspaces of
R™ carries a unique rotationally-invariant probability measure f,;. Whenever we say that
E is a random -dimensional subspace in R", we relate to the above probability measure g, ;.
Under the additional assumption that the random vector X is isotropic, the subspace E for
which Projz(X) is approximately Gaussian may be chosen at random and this holds with high

probability. Formally the lemma is as follows:

Lemma 1: Let X be an isotropic random vector € R™ with a log-concave density. There
exists a subset © C S™1 with 0,_1(0) > 1 — exp(—+/n) such that for any 6 € © and any
measurable set A C R,

1 C

2

where C,a > 0 are universal constants. (0)

Thus a random linear projection of an isotropic vector drawn from a log-concave density is close
to a Gaussian in a total variation sense with high probability. In another work by Eldan and
Klartag, the following statement was made stronger by showing the pointwise closeness of the

projected density with an isotropic gaussian. More specifically,

Lemma 2: Let X be an isotropic random wvector in R™ with a log-concave density. Let
1 <1< n be an integer. Then there exists a subset € C Gy, with p, (E) > 1 — Cexp(—n)
such that for any E € €, the following holds: Denote by fr the density of the random vector
Projg(X). Then, for any v € E with || < en®,

fE(ZL') . C
o) S

where, C,cy,ca,c3,a > 0 are universal constants. Here, ¢(x) = (2m)"2exp(—|x|?/2) is the

standard gaussian density in E. (7)
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3.2 Extension to Non-Isotropic Random Vectors

When X does not have an isotropic density, then we can still assert that Projg(x) is approxi-
mately gaussian for some [ dimensional subspace E C R"™. Thus we cannot project the data on
any direction as it is not isotropic but only along directions where the density concentrates in
the lower dimensional subspace. If we assume that our data is a random vector which is not
isotropic, we can still use Klartag’s estimates however with a scaling of covariance matrix, i.e.,
if A is the covariance matrix and P is the projection operator, then our effective new projection
operator P’ := A~Y2PAY? Thus, we map the general case to Lemma 1 by the change in the
projection operator which involves scaling by the covariance matrix. However, the above trans-

formation can blow up errors if we project along directions where the densities don’t concentrate.

Generally high dimensional distributions are concentrated around low dimensional subspaces
or manifolds. This is particularly true for log-concave distributions. Thus, it make sense to
consider only those directions where densities concentrate. Thus, we first perform subspace
clustering algorithms on the original data and then project along these directions. Once we get
Gaussians on the subspace, we can then learn gaussian mixture models on that space using

various methods like those in (8), (9).



4. Problem Statement

With all the necessary tools in hand, we shall now define the problem statement. It is reasonable
to assume that data is drawn from a mixture of log-concave densities because they are expressive
enough as argued earlier. Following this, we expected that random linear projections of such a
vector onto a subspace should be close to a Gaussian Mixture on the lower dimensional subspace.

Thus the flow of steps is as follows:

1. It is reasonable to assume that log-concave densities are concentrated in lower dimensional
subspaces. We find such directions using subspace clustering and then project the data

along these directions to obtain a denser lower dimensional representation.

2. Invoking the result by Klartag and Eldan (7), this lower dimensional representation is
expected to be close to a gaussian mixture with the same weights as the original mixture
with high probability. Learn a gaussian mixture model in this space using standard

algorithms like expectation maximization.
3. Comment on the higher dimensional estimates using the Johnson Lindenstrauss Lemma

The closest to our work is the work by Dasgupta (8), where it is shown that learning a GMM
on a higher dimension can be made easier by random projections. It was also shown that this
transformation reduced the eccentrity of the high dimensional gaussians which made them easier
to learn. The main contribution of this work is considering the case where the multimodal

distribution is a more general mixture of log-concave densities as opposed to the simpler case.



5. Theoretical Guarantees

Define GM Mg (x) : The pdf of a random vector following a gaussian mixture model with K
components and which can be expressed in the form of S0 wN (z; i, $i)
Consider a random vector X € R” which follows a mixture of log-concave densities p(x) with

K (finite) components subject to > . w; = 1 and each f; being log concave

fx(z) = iwz‘fz‘(m)

Consider a random projection of the data vector onto a subspace of dimensionality d < D by
the operator ¢. Typically, entries of ¢ shall be either sampled from a gaussian or a bernoulli
with +1 values with the columns appropriately scaled. Let Yi,Y5,..Yx be random variables
from the K component distributions respectively. Consider ¢ C Gp 4, then for some £ C ¢,
Projp(X) = ¢X for a fixed ¢. Then for all A C E which are measurable we have the following

Py(¢X € A) = Ex[I(¢X € A)] = / I(6X € A)fx(x)dx

In the above I denotes the indicator function. Consider a random variable I which takes values
1,2,...K with P(I = 7) = w;. Using this the above mixture model can be viewed as a latent
variable model with the latent variable I and having the following -
i=K
fx(x) =Y P =) fx(a|l =)
i=1
Plugging the above expression in the equation obtained earlier we get -

1=K

Py(6X € A) = /]1(¢X € 4) Y P(I = i)fx(all = i)da
= : P(I = z)/]l(ng € A)fx(z|I =i)dx

=1
We shall now look at the integral in the summation, given that we known that X comes from
which component of the mixture (as the pdf is conditioned on I = i, we can assert the following

statement -

[ 10X € ) fxlalr = i) = Po¥i € 4
Px(¢pX € A) = ZZwiIP’(gzﬁYi €A

7
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Results of Klartag (0) suggest the following : If dim(F) < D¢, for a certain vector Y following
a log concave density, then for a certain gaussian random vector Z in the subspace F, and for

some constant C', we have the following results:

C
sup [P(Projp(Y) € A) — P(Z € A)| < —
ACE De

We can use the above for each Y; as they are drawn for f; which is a log concave density. Hence

for gaussian vectors 7y, Zs, ... Zx(with Z; ~ N (113, %;)), then considering the following gaussian

mixture density and a random vector I' ~ GM M

GMM (x Zwl T iy 2

PT e A) = /sz (; p1iy 25) ZwZ/N$““ ; Zwl (Z; € A)

sup |Px (¢X € A) — (FEA)\—sup|sz (oY; € A) — iwiP(ZieA)]

ACE ACE

K

gz ;sup [P(¢Y; € A) —P(Z; € A)| <

/

C

C;
Wy— = —
ACE - De  De

1=

Here C' = ZZ 1 w;C; which is constant. Thus the density of a random lower dimensional

projections of log concave mixtures are close to a gaussian mixture in a total variation sense.



6. Sparse Subspace Clustering

6.1 Problem Formulation

As motivated earlier, we need to identify the directions where densities concentrate which are
believed to be in subspace. This chapter defines the problem of subspace clustering and various
algorithms the optimization problem which arises as a result of the formulation.

Many real-world problems deal with collections of high-dimensional data, such as images,
videos, text and web documents, DNA microarray data, and more. Often, such high-dimensional
data lie close to low-dimensional structures corresponding to several classes or categories to
which the data belong. The key idea is that, among the infinitely many possible representations
of a data point in terms of other points, a sparse representation corresponds to selecting a few
points from the same subspace. We now look into certain algorithms that are used for subspace

clustering on affine spaces.

6.2 k-Means Clustering

This is the baseline algorithm used for clustering of points based on euclidean distance and
not on the basis of them belonging to a common subspace. We shall use this as the baseline
algorithm to compare other algorithms for subspace clustering. k-Means clustering is clearly
not desirable because it shall mess up the points at the intersection of subspaces and won’t

cover far away points which still lie on the same hyperplane.

6.3 Spectral Clustering for SSC

This work by You et.al. (10) was one of the earliest works in subspace clustering for affine
spaces. Consider we have a data matrix X € RP*Y where N is the number of samples and D
is the dimensionality of the data. We use self-representation, i.e., for a particular datapoint x;,
we can write it as a linear combination of points belonging in the same subspace. Thus we aim

to solve :
C* = argmin ||C||1,s.t. X = XC and diag(C) =0

where C' € RV*¥ ig the representation matrix and we want the diagonal elements to be 0 in
order to avoid the trivial solution of each datapoint being represented as itself and with 0
weights given to other. We then define the matrix W = C' 4+ CT and then use spectral clustering
techniques on W to get clusters of the data. It has been shown that under mild condition, SSC

is subspace preserving, i.e., if ¢; ; = 0 implies x; and z; belong to different subspaces.
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6.4 Elastic Net Subspace Clustering

In (11), instead of minimizing just the -1 norm of the connectivity matrix, we penalize the
weighted sum of the I-1 and 1-2 penalities with a trade off parameter A. Thus the loss function

which we aim to optimize is:

¢; = argmin Al|ci||[1 + (1 = N)]|ci|[3,8.t. 2, = Xe¢; and ¢; = 0

6.5 Orthogonal Matching Pursuit for SSC

To scale the SSC algorithm to large datasets, (12) using OMP like updates as in compressed
sensing to find the connectivity matrix for solving the same optimization problem as in Spectral
Clustering. There is still a difference of using OMP for subspace clustering as the recovered
matrix need not be unique unlike signal recovery in the case of compressed sensing. (12) shows
some theoretical bounds as well for subspace identification and is shown to be scalable to upto

100, 000 data points which is most relevant for this work.

6.6 Empirical Results

We present some results for each of the above algorithm on synthetically generated dataset
Experimental Conditions :

Ambient Dimension : 100

Subspace Dimension : 15

Number of Subspaces in the Union : 10

Number of Samples : 10,000

Results :
Algorithm Clustering Accuracy
k-means 33.2
Spectral Clustering 65.6
Elastic Net 89.3
SSC-OMP 92.6

Table 6.1: Basic comparision of various subspace clustering algorithms

SSC-OMP is used for all the subsequent experiments to find the directions where the
component log-concave densities concentrate. Once clustered in the high dimensional space,

each cluster is projected at appropriate directions.

10



7. Learning Mixture of Gaussians

Once we have points in the projected space, we can learn the parameters of a gaussian mixture
model using standard methods like expectation maximization. To recall, a GMM with &

components is a parameterised density estimator taking the form:

1=K
= Z wi I Nza i Zp
1=1

We start with random initialization of these parameters and then iterate over the following two
steps until convergence. We check the negative log-likelihood values as the metric needed to
be minimised and stop the iterations when the relative change falls below some € which is a

hyperparameter.

1. E-step: Compute the posterior probability over z given our current model - i.e. how

much do we think each Gaussian generates each datapoint.

Fp(elz = k) weN(z; pu, Xp)
p(z) Sy wilN (s s, )

0 = (e = k) = 2E

v can be viewed as the responsibility of cluster k£ towards x

2. M-step: Assuming that the data really was generated this way, change the parameters of
each Gaussian to maximize the probability that it would generate the data it is currently
responsible for. The re-estimation of parameters is done in the following way -

i=N _(n) (n =N _(n n
2i1 ’yl(c 'z > D i1 VI(g )( ") — ) (™) = )™

SN S N,

N n=N
_ Yk _ (n)
Wy, = N’Nk_ ;Vk

3. Evaluate log likelihood and check for convergence

log p(x|w, p, ¥ Zlog sz T iy 3

11



8. Preliminary Experiments

For a simple experiment, we take D = 5 and take three log-concave distributions - a multivariate
gaussian, and 2 laplace distributions with different means and decaying factors. The 3 component
means were taken to be well away from each other without much overlap. A total of 20000
samples were drawn from the mixture with weights [0.2,0.5,0.3] and a linear operator ¢ with
bernoulli entries was used for projection on a 2D space(so that we can visualize). Following are

the scatter plots of the random projections obtained on 2 such ¢ instances.

Figure 8.1: Low dimensional projections for ¢,

Figure 8.2: Low dimensional projections for ¢,

The above preliminary empirical experiments suggest clusters are preserved in the lower
dimensional space if they are far apart originally which makes them suitable for learning

Gaussian mixture models.

12



9. Empirical Results

9.1 Synthetic Data

Here, we generate data from randomly sampling from a mixture of log concave densities and
then fit a GMM on the projected space [no clustering yet]. We hope to recover the weights upto
a permutation ambiguity. Further we hope to get the density well only if we have O(ﬁwi), ie,
enough samples even to represent the least weighted cluster so that those points do not get
subsumed in some other cluster or be considered as outliers. Consider the following distributions
and how weights are preserved in them -

Example 1 :

Ambient dimension D : 50

Projected dimension d : 20

Mixture Components k : 4

The 4 components were a Gaussian, Laplacian, Beta and Uniform distribution. The elements of
¢ were randomly sampled from a standard normal gaussian. Number of samples were 10k. For
each row of the table below, the parameters of the above distributions and the entries of ¢ were

generated randomly.

Original Mixture Weights Weights estimated by the GMM Algorithm

0.25, 0.25, 0.25, 0.25 0.249, 0.248, 0.249, 0.252
0.15, 0.5, 0.14, 0.2 0.156, 0.498, 0.146, 0.199
0.4, 0.3, 0.2, 0.1 0.401, 0.295, 0.202, 0.1
0.1,0.7,0.1, 0.1 0.1, 0.699, 0.1, 0.1

Table 9.1: Comparison of weights of the mixture with those predicted from the GMM

Figure 9.1: t-SNE embeddings on 2d for the 15d space which indicates 4 clusters which should

be present in the higher dimension as well

13
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Example 2:
Ambient dimension D : 150
Projected dimension d : 50
Mixture Components k : 3/6
The 3/6 components were a Gaussian, Laplacian Uniform distribution. The elements of ¢ were
randomly sampled from a standard normal gaussian. Number of samples were 10k. For each
row of the table below, the parameters of the above distributions and the entries of ¢ were

generated randomly.

Original Mixture Weights Weights estimated by the GMM Algorithm
0.173, 0.48, 0.346 0.172, 0.364, 0.46
0.658, 0.163, 0.179 0.655, 0.165, 0.179

0.218, 0.042, 0.262, 0.176, 0.194, 0.107  0.217, 0.051, 0.305, 0.176, 0.193, 0.057
0.213, 0.044, 0.253, 0.139, 0.193, 0.156  0.214, 0.077, 0.297, 0.139, 0.194, 0.082

Table 9.2: Comparison of weights of the mixture with those predicted from the GMM

9.2 Real Data

9.2.1 MNIST Dataset

Using Raw Data for Projections:

MNIST Images which were 784 dimensional were projected onto a 500 dimensional space
using a random Gaussian matrix with entries iid for a normal gaussian. A GMM with 10
components was fitted on the projected space and we measure the log-likelihoods of the same
on both the train and the test split. The train split had 60k images while the test split had 10k
images. We also ’decode’ after sampling from the GMM by using basis pursuit as mnist images
are sparse in their canonical basis. Following are the results of the same :

Train Log Likelihood: -206.12

Test Log Likelihood: -211.47

Basis Pursuit -
y =z +n

recovery using the following : min||z||;s.t.||ly — Pzl < e

14
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e 20
e 30
e 40

60
7.

80
90

Figure 9.2: t-SNE embeddings of the projected space of the test samples where each color code

indicates a digit class

094 /#6808

Figure 9.3: Groundtruth train image after CS recovery (left) and samples drawn from the fitted
GMM after decoding (right)

Projections after PCA:
In this part of the experiment, we first take the PCA projections of the images(top 200) and
project them on a space of size 50 using the similar Gaussian matrix. We then fit a GMM with
10 components on this 50 dimensional space.
Train Log Likelihood: -140.908
Test Log Likelihood: -140.88
To compare whether the samples in the lower dimensional subspace are indeed Gaussian, we
use the help of Q-Q plots. More specifically, we first fix a label [ and fetch all the points which

15
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have been assigned that label [ by the GMM. These points are then whitened by an affine
transformation, more specifically, X’ := £~Y/2(X — ) where u, ¥ is the mean and covariance
matrix respectively. We compare these set of points X with a standard normal Gaussian in
terms of quantiles. A straight line with a slope of 1 indicates that the distributions plotted

along the axes being exactly equal to each other.

Sample Quantiles
o
L | )
Sample Quantiles

T T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

(a) Q-Q plot for label 0 (b) Q-Q plot for label 4

Sample Quantiles
o
L ! |
Sample Quantiles

T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

(a) Q-Q plot for label 7 (b) Q-Q plot for label 9

9.2.2 Labeled Faces in the Wild Dataset

This dataset has a total of 13233 samples of human faces out of which 10k samples are in the
train split while the other in the test split. Each samples had a dimensionality of 5828 with
values being floating point numbers between 0 to 255. PCA was performed on this raw data
and top 700 eigen values were taken for transforming the data. This transformed data was

projected onto a 300-d space for fitting a gaussian mixture.

16
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Train Log Likelihood: -2451.13
Test Log Likelihood: -2457.64

As in the case of MNIST, we look at the Q-Q plot for datapoints given the same label

by the GMM algorithm to compare whether it mimics a standard gaussian after an affine

tranformation of mean subtration and scaling by £~1/2.

Sample Quantiles
[=]
L ! |
Sample Quantiles

—4 T T T T T T T T -4 T T T T
-4 -3 -2 -1 0 1 2 3 4 —4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles

(a) Q-Q plot for label 0 (b) Q-Q plot for label 1

The slope 1 line in Q-Q plots corroborate our claim that random images of mixture of
log-concave densities is indeed a gaussian mixture. The difference at the tails of the distribution
can be expected as even theoretically, we just guarantee closeness in a total variation sense and
not a pointwise equality. As anyways the tail probabilities are less, they can be different for
both the distributions while still allowing us to bound the total variation difference. Further we

can always have outliers which can also affect the GMM learning algorithm which is not robust.

9.3 Subspace Clustering Post Projection

Random projection is essentially a linear map which shall preserve the structure of data lying
in a union of subspaces. To save computational cost, we perform subspace clustering post
projection and then fit a gaussian mixture model. The experimental conditions were the same for
subspace clustering before projection. The Q-Q plots for the above two datasets are presented

below -

17
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Sample Quantiles
[=]
L ! !
Sample Quantiles

°® °
-4 T T T T T T T -4 T T T T

-4 -3 -2 -1 0 1 2 3 —4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles

(a) Q-Q plot for MNIST label 2 (b) Q-Q plot for MNIST label 6

Sample Quantiles
Sample Quantiles
(=]

T T T T T T T T T T T T
-4 -2 0 2 4 -3 -2 -1 ] 1 2 3

Theoretical Quantiles Theoretical Quantiles
(a) Q-Q plot for Faces label 3 (b) Q-Q plot for Faces label 6

9.4 Choice of Projection Dimension and other Parameters

There were two factors which governed the choice of the dimension of subspace for projection:

1. Subspace clustering using SSC-OMP requires just the number of clusters in the union as

the input parameter which was set equal to the number of gaussians in the mixture.

2. The latent dimension d should be of the order O(log N/e?) for us to invoke the JL lemma

where N is the number of the datapoints in the higher dimensional space.

3. For the MNIST experiment specifically, the latent dimension was chosen to be a bit higher
(500) so as to enable compressed sensing recovery by sampling from the gaussian mixture

model fitted on the latent space and visualize the samples.

18



10. Invoking the JL Lemma

Once we have fit a GMM on the subspaces, then we can invoke the JL Lemma to comment
on the estimates of various moments in the higher dimension. As shown earlier, the mixture
weights are preserved with high probability. Thus the projected points of each cluster in the
gaussian mixture correspond to a log-concave density in the higher dimension. Given we know
all the moments in the lower dimension, we can invoke the JL Lemma to comment about
higher dimensional estimates. This is similar to the mathematical analysis done for mapping
of estimates in (8). Once we have the means in the higher dimension, then we can estimate
the second moment as well. Say indices belonging to a set A form a cluster and |A| = N, then

covariance matrix for that cluster can be estimated

v N (K ) (X~ )"
k ; ~
Given that the lower dimensional projections are gaussian, the higher moments carry no extra
information in the sense that they will only be functions of the first two moments. Further, even
if we have all the moments of a log-concave density, we cannot reconstruct the true pdf without
any extra assumptions (13). This is the moment problem. Thus using the method of random
projections for density estimation, we get the best fit gaussian for each log-concave density in
the higher dimension using the maximum entropy principle(given the mean and variance of a
distribution, gaussian maximises the entropy). The component weights can be retrieved exactly

with high probability as shown in the theoretical and empirical results.
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11. Conclusion and Future Work

We present an easy to implement method to for estimating multimodal high dimensional
densities which can be expressed as a mixture of log-concave distributions. We use random
projections as a way to reduce to dimensionality and show that this projected data is very close
to a gaussian mixture. This claim of ours is corroborated by experiments on both synthetic
data and a couple of real data sets. The JL. Lemma can be invoked thereafter to comment on

higher dimensional estimates. Some lines of future work can be :

o Whether the assumption of mixture of log-concave densities can be relaxed to a more

general distribution involving a combination of sum and product nodes?

» Whether a non-linear transformation f(.) which preserves distances like a random matrix
multiplication also induces a structure like a GMM on the projections? This would be

helpful in analysing the latent spaces of current deep neural networks.
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